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Missile Autopilot Robustness Using the
Real Multiloop Stability Margin

Kevin A. Wise*
McDonnell Douglas Aerospace, St. Louis, Missouri 63166

The robustness of a longitudinal missile autopilot to uncertain aerodynamics is determined using the real
multiloop stability margin. This method determines control system stability robustness to simultaneous real-
parameter variations without conservatism. This paper presents an overview of the theory and a computer
program developed to evaluate control system robustness to real-parameter uncertainties. The program imple-
ments a signal flow graph decomposition method to compute the robustness analysis model. A polynomial-time

convex-hull algorithm is presented.

Introduction

MISSILE flight control system must guarantee stability

and performance in the face of large aerodynamic uncer-
tainties and disturbances. This requires the feedback controller
to maintain system stability and loop performance for all pos-
sible variations in the plant behavior. Determination of the
degree of robustness to these aerodynamic uncertainties is the
focus of this paper. A recent publication by deGaston and
Safonov! outlines an algorithm that will exactly compute the
stability margin k,, of diagonally perturbed multivariable sys-
tems without conservatism. This paper presents an overview of
that theory and describes software used to analyze a bank-to-
turn missile autopilot.

In the early 1980s, several papers described how multivari-
able feedback systems can be analyzed in the frequency do-
main.2? Doyle* developed several robustness theorems that
were fundamental in developing the analysis techniques used
to-analyze model uncertainties. These methods utilize singular-
value theory as a means of measuring the size of multi-input
multi-output frequency-dependent matrices. These tests mod-
eled control system uncertainties using a full single-block ma-
trix structure. If the uncertainties were truly structured in this
form, then these tests are not conservative. If the uncertainties
did enter the system in a structured way, these tests produced
conservative estimates of stability robustness.

Doyle3® later developed a method of incorporating the
structure of the uncertainty into the uncertainty analysis. This
capability reduced the conservatism of the previous singular-
value techniques by utilizing a multiple-block diagonal struc-
tural model of the uncertainties. This test is called the struc-
tured singular-value (SSV) p test.

Morton’-8 applied the u test to the analysis of real-parameter
variations. The SSV pu software generally models the real-
parameter variation as a complex variation and produces a
slightly conservative bound. Jones® and Fan and Tits!® have
worked on reducing this conservatism, but reliable software
implementing the real SSV is not readily available.

In contrast to the foregoing SSV-based tests, robustness to
uncertainties is also being analyzed using polynomial methods.
A myriad of papers have recently been published that utilize
Kharitonov’s theorem!! and variants of it. Kharitonov’s theo-
rem analyzes the robustness question by examining the Hur-
witz (stability) properties of a family of polynomials whose
coefficients are based on the system’s characteristic equation
and uncertainties. Barmish and DeMarco'? present an excellent
review of the literature on these polynomial methods.
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In Sideris'? a polynomial-time robustness algorithm is pre-
sented that assumes the closed-loop polynomial coefficients
are affine in the uncertain parameters. Polynomial time refers
to the time required by an algorithm to solve a problem. For
some input of size m, the time required by a polynomial-time
algorithm is proportional to a polynomial in #. For exponen-
tial-time algorithms, the time would be proportional to o’ (at
least), where « is any number > 1.

Assume that the parameter space of the uncertain parame-
ters is an m-dimensional hypercube. Let Q(jw) denote the
image of the hypercube in the complex plane, mapped through
the closed-loop characteristic polynomial. The image Q(jw) at
a fixed frequency is a parapolygon of 2m sides. The Sideris
algorithm is a polynomial-time algorithm because it works
with the edges of Q(jw), of which there are 2m. The deGaston-
Safonov algorithm uses the 2™ vertices of the hypercube. As m
increases, there is an exponential explosion in the number of
vertex points that have to be analyzed. This problem is ad-
dressed later in this paper.

The software presented here computes a lower bound on the
real margin using an analysis model derived from a signal flow
graph. Previous applications' used an analysis model derived
with a technique from Morton?:8 Figure 1 shows this model in
which the real-parameter variations are isolated into a diago-
nal A matrix. With no parameter variations (A = 0), the system
is stable [M(s) is nominally stable]. The approach developed
by Morton creates a state-space triple (A4,,,B,,,C,,) for M(s)
by isolating the » real-parameter variations into A =diag[$;]
by factoring out the variations in the closed-loop system ma-
trix, modeled as

Ag=Ag+ Y Eb;
i=1

If the state-space description of the control system is linear
in the uncertain parameters, then the Morton method is appli-
cable. If the parameters multiply each other, then the method
is no longer applicable. A technique is presented here that does
not suffer from this restriction. The only requirement is that
the control system be linear and that a signal flow graph (or
block diagram) can be constructed for the system. Also, the
parameter uncertainties must be independent.

A

Fig. 1 Block diagonal analysis structure.
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Fig. 3 Missile autopilot and dynamics.

In many problems, the coefficients of the differential equa-
tions may be complicated functions of many parameters. For
example, a signal flow graph branch gain modeling the aero-
dynamic stability derivative Z, (body lift due to angle of attack
o) for a missile is defined as

7. 0SxCu
mVv

(Other missile aerodynamic stability derivatives modeling
pitching moments and fin forces are similar functions of dy-
namic pressure @, mass m, velocity V, etc.) If both Q and C,,
are to be varied in an analysis, the Morton method cannot be
applied. By modeling the control system in a signal flow graph,
a multiparameter coefficient can be modeled as a series of
branch gains with individual parameters on single branches.
For example, Z, would be represented with the branch gains
shown in Fig. 2, where 6Q, 6C,,, 8,,, and 8V are real-parame-
ter variations in each of the parameters. This method decom-
poses each signal flow graph branch gain modeling a real
parameter and isolates the variation creating a diagonal A. In
addition to forming analysis models, this signal flow graph
modeling technique is ideally suited for forming the general
A—P — K H?* controller synthesis models (A uncertainties,
P plant, and K controller). This is demonstrated by Wise et
al.’> where the H®-u synthesis design model is formed using
this method.

Robustness Theory for Real-Parameter Uncertainty

Control system sensitivity to uncertainties in dynamics has
been a major focus for many years. In the past, the most
widely used measure of stability robustness has been single-
loop gain and phase margins derived from Bode (Nyquist) type
frequency-response calculations. A new measure called the
real multiloop stability margin, as defined by deGaston and
Safonov,! is a scalar quantity interpreted as a gain margin. Its
calculation gives an exact measure of control system stability
robustness to real-parameter variations. This section presents
the theory used to compute the real margin and is taken from
deGaston and Safonov.!

Our missile flight control system under uncertainty is shown
in Fig. 3. The uncertainties may arise from real-parameter
variations, neglected/mismodeled dynamics, or combinations
of both. Only real-parameter variations are addressed in this
work. For analysis, the control system shown in Fig. 3 is trans-
formed into the block diagonal perturbation structure of
Fig. 1. The uncertainties in the system are isolated and placed
into a diagonal matrix A. The transfer matrix M describes
nominal system characteristics that are stabilized by a compen-
sator. Thus, for A=0, the system is stable. Let

A= diag[sy,...,8,], M(s) eCrxn 5}
The stability of the system described by Fig. 3 is implied by
det[I + AM#0 (the multivarible Nyquist theorem). The sta-

bility margin &, is defined as
Km = min {k € [0,00) | det[] +kAM] = 0} )
A

Without loss of generality, consider each §; to represent an
uncertain real parameter in the system. A is contained in the
domain D, with each 8; € D;, where D, is the domain of the ith
parameter. If

(1/k)6; € D; for all { 3)
then AM(s) remains stable. This defines k,, as a multiloop
stability margin.

The proposed algorithm for computing k,, converges by
iterating lower and upper bounds on k,,, which are determined
when either the convex hulls or interior points, respectively, of
certain image sets first intercept the origin. This develop-
ment is made possible by the use of a mapping theorem taken
from Zadeh and Desoer.!¢ The multiloop stability margin is
computed by finding the smallest k& for which there exists
A=diag[é;,...,6,] €D such that det[I+kAM]=0.

The approach is as follows: Fix k. Map all the parameter
space D into the complex plane with det[7 +kAM]. If this
region so mapped does not include the origin, then & is a lower
bound on the stability margin k,,. Increment & positively until
the origin is just included in the map. This would yield %,,
exactly. However, computing the image of D under the map-
ping det{7 + kDM ] is computationally prohibitive. To circum-
vent this problem, the convex hull of the image of D is used.
Computing the convex hull of the image is practical using a
mapping theorem from Zadeh and Desoer.!6

We begin by defining the parameter space D as

D=D xD,x - XD, 4)
This parameter space describes the uncertain real parameter
modeled in Fig. 1. In general, the parameter space D will be an
n-dimensional polytope having 2" vertices. By scaling the
parameter uncertainties and incorporating the scaling into M,
a hypercube describing the parameter space may be used rather
than a polytope. Define V; as a vertex of the hypercube D,
where i =1,...,2". The vertex V; represents a corner of the
hypercube. Let

V:{VI’V29~-'JVm}y m=2’l (5)
denote the set of all hypercube vertices V' CD. Let Ay, be a
matrix of parameter uncertainties made up of the vertex points
v;;as j is varied from 1 to n. This is described as

AVizdiag[v,-,j, j:I,...,n] (6)
Define
det[I +kDM] = {z € C |z =det[I + kAM]V$, € D;,

i=1,...,n,  with k and M fixed] @

This set is a set of points that represents the hypercube solid
being mapped into the complex plane through the determinant
function. It describes the entire image of D (the image of the
parameter uncertainties) in the Nyquist plane. Define

det[I+kVM] = {y; € C|y;=detlI +kAyM], i=1,...,n}
®)

Equation (8) describes the set of points mapped into the com-
plex plane by the hypercube vertices. Let F;=det[] +kAy,M]
be the mapping of the ith vertex. F; represents a single point
in the set det[] + kK VM. With these definitions, we are now
ready to state the following theorem.
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Fig. 4 Multiloop stability margin using deGaston-Safonov algorithm,

Theorem 1: Let k, M, D, det[I +kDM], det[I + kVM] be
defined as previously given. Fix £. Then

det[/ + kDM C co{det [ + kVM]} ©

This theorem states that by mapping the 27 vertices of D by
det[I + kVM] to the complex plane and then constructing a
convex hull about the 2” points, a polygon is created that
encompasses det[/ + kDM]. The utility of this theorem is best
presented by an example.

Consider a three-dimensional uncertain parameter space.
The hypercube is shown in Fig. 4 with the 23 vertices arbitrarily
labeled. Thus, ACD =D, XD2XD3 with Di = [6,‘1,6,‘2]. The
parameters 8;; and 8,5 describe the lower and upper bounds of
the parameter §;.

Figure 4 shows the mapping of this parameter-space hyper-
cube into the complex plane using the determinant mapping
function. The shaded region depicts the true image of the cube
solid mapped into the Nyquist plane. If the origin was con-
tained in the shaded region, then the system would be unstable.
Since the origin is not in the shaded region, the gain margin &
used in det[] + kDM] is smaller than the true stability margin
and should be increased in magnitude until the origin is in-
cluded. The value of k such that the origin is just included in
the shaded region is the exact multiloop stability margin &,,.
In Fig. 4, the vertex points V; are mapped into the F; points.
The convex hull containing the image of the hypercube is
denoted as co{det[7 +kVM]} and is shown as a heavy bor-
der around the det{/ + kDM] image. We see from the figure
that if co{det[/ + kVM]} were used to determine k, conser-
vatism would be present since the co{det[/ + kVM]} contains
more points than the true image of det[] +kdM]. This fact
is used to define a lower bound on k,,, resulting in the follow-
ing lemma.

Lemma I: Let M, D, and det[] + kDM] be defined as pre-
viously given. Then, for k& > ko,

det[I + koDM]Cdet[] + kDM] (10)

cofdet [ + koDM]] C co{det [/ + kDM]] 1n

This lemma states that the image of the hypercube solid under
the determinant mapping function, for kg, is a subset of the
image mapped using a larger k. Thus, the convex hull contain-
ing det[/+koDM] is contained in the convex hull
co{det[] + kDM]}.

Lower Bound on the Stability Margin &, '

Application of the aforementioned lemma allows us to ex-
pand co{det[I + kDM]} until the origin is enclosed. We can

NYQUIST PLANE
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Coldet(!+k,VM)]
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Fig. 5 Convex-hull expansion with k; <k <k3.

show this graphically in Fig. 5. The solid lines represent
cofdet[I +k;VM]} for ki, k,, and k5. For all k <k;, the
origin is not enclosed by co{det[/ + kVM]}. Thus, k3<k,, is
a lower bound for the stability margin k,,. If k increases with-
out co{det[7 + kVM]]} intercepting the origin, then k,, = o.

Upper Bound on the Stability Margin &,

To compute the upper bound on k,, the path between
the vertices whose line segment intercepts the origin must
be examined more closely. Define the following: Critical ver-
tices: F;=det[I+kAy,M], F; =det[1+kAVjM], i#j and
B € 10,1] such that (1 —@)F; +B8F; =0. Isolated critical vertex
(ICV): F;is isolated if F; # F;, i #j. Coincident critical vertex
(CCV): F;is coincident if F;=F;, i #j.

Critical vertices are defined as the two vertices whose line as
segment intercepts the origin. These critical vertices are iso-
lated if F; #F;. They are coincident if F; =F;. Let m(i,j) be
equal to the number of differing coordinates of the two ver-
tices ¥;and V; that are mapped by det{/ + KAy, M] to F;and F}.
In Fig. 5 the critical vertices are Fs; and Fg3. The m(i,j) is the
minimum number of edges on the hypercube D from vertex
Vito V;. InFig. 5, m(i,j)=1. The following lemma will aid in
the calculation of the upper bound on k,,.

Lemma 2: Any path along a single coordinate in D is
mapped by det[] +kDM] to a straight line in the complex
plane. For fixed M, the det[/+kDM] for A=diag[é,,
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...,8,] € Dis a polynomial in the variables §, and is affine with
respect to each of the §;. This is true only for a diagonal A and
is obtained by definition of the determinant. This affine rela-
toinship proves this lemma.

Lemma 2 guarantees that any point on the face of the hyper-
cube D mapped into the Nyquist plane will be contained in the
convex hull formed by the mapped vertices. This is true only
for real parameters and allows us to determine stability robust-
ness using parameter-space methods. If the parameters under
variation were complex, any path along a single coordinate
would trace an arc in the Nyquist plane. Thus, points con-
tained on the face of a complex-parameter hypercube mapped
into the Nyquist plane need not be contained in the convex hull
formed by the hypercube vertices. This fact precludes the use
of parameter-space methods in analyzing complex-parameter
variations.

Define a vertex path as any path between critical vertices
F;and F;, consisting of m(i,/) straight-line segments, defined
by det[I +kA,M] as x progresses from V; to V; along the
edges of the hypercube D. The first such vertex path to touch
the origin defines a point in det{7/ + kDM] and the associated
k is an upper bound on the stabilty margin k,,. The vertex path
will determine the region in the parameter space that causes
instability.

Convergence to k,,

The actual stability margin is computed by an iterative algo-
rithm. It begins by examining the vertex paths between critical
vertices (ICVs or CCVs) that intercept the origin. This defines
the edges of the hypercube closest to the origin. The domain D
is then split along this vertex path, creating subdomains. Con-
vex hulls around smaller and smaller subdomains are com-
puted. As the subdomains become small, the union of all of
the convex hulls for all of the subdomains gets close to the
actual image of the domain D. The accuracy in the computa-
tion of %, is then dependent on how small the subdomains are
made. The following three lemmas are used to prove the con-
vergence theorem that computes the exact multiloop stability
margin.

Lemma 3: On a hypercube of dimension »n with two vertices
that differ by m coordinates, there are m ! paths between these
two vertices along the edges of the hypercube. Each path be-

PARAMETER HYPERCUBE.

1
INITIALIZE SIGNAL FLOW GRAPH MODEL
L INITIAL FREQUENCY.

2
OPTIMIZ/ATION
FREQUENCY

CONJUGATE GRADIENT

EVALUATE
Mjos)

MAP VERTICES | MAP 2" VERTICES
DET[I+kiaM]

INTO NYQUIST PLANE

DETERMINE IF THE
ORIGIN IS ON THE
CONVEX HULL BOUNDARY

kj ,00, , CRITICAL VERTICES

Fig. 6 ROBUSTR flowchart.

OUTPUT & !NPUT
T0 & 210 FROM &

Pic

Si
» oo (I
*—b—e

BRANCH GAIN  VARIATION MODEL FORM INPUT-OUTPUT

BRANCHES TO EACH
PARAMETER VARIATION

Fig. 7 Signal flow graph model for real-parameter variations.

Fig.8 Acceleration command autopilot signal flow graph.

tween these two vertices will have m + 1 vertices along the path
(including the original vertices).

Lemma4: Letk, M, D, det[I+kDM], and det[] + kVM]
be defined as previously given. Let F; and F; be isolated critical
vertices with m(i,j)=2 and F, denote the first vertex along a
vertex path emerging from F;. Define a point along the line
segment between F; and F} as Fy, exclusive of the end points,
ie., F,=(1—-PB)F; +BF;,=0, 8 € (0,1). Let V, be the associated
point on the hypercube edge defined between V; and V. Cut
the domain D at V, orthogonally to this edge to create two
subdomains D, and D,, where V; € D, and V; € D,. Then nei-
ther co{det[/ + kD, M]} nor co{det[] + kD,M]} includes the
origin.

Lemma 5: Letk, M, D, det[I +kDM], and det[I + kVM]
be defined as previously given. Then there is at least one Ay,
associated with the stability margin k,, that assumes an ex-
tremal value.

Lemma 3 is used to determine the number of vertex paths
between critical vertices. These vertex paths define the coordi-
nate direction in which the parameter space domain D is split
into subdomains.

Lemma 4 is the heart of the convergence theorem used to
obtain k,,. It is employed when m (7,7 )=2. The utility of this
lemma is best explained by an example. In Fig. 4, let vertex
images F; and Fy be isolated critical vertices, with k, deter-
mined such that co{det[] + k,;VM]} intercepts the origin. For
this case, m(i,j)=m(1,6)=2. The convex hull surrounding
the det[I + kDM image has a larger area than the true image
of the hypercube solid (shaded area). The area contained in
co{det][/ +k,;VM]} that is not contained in det[/+ kDM]
makes k; a conservative estimate, i.e., k; <k,,. Lemma 4 says
that if we split the parameter space into two subdomains along
one of the two vertex paths (Vi—V,—Vy) or (V,— Vs
— Ve), and compute convex hulls about each of the images of
the two subdomains, then the origin will not be contained in
either convex hull. This guarantees that we can converge to the
true stability margin k,, by splitting the parameter space into
subdomains. As the subdomains become smaller, we approach
the true image of det[7/ + AkDM].

Lemma 5 states that k <k, will not destabilize the system.
Geometrically, this places the Ay, on the boundary of D and
guarantees a unique stability margin k,,. By using these lem-
mas, the convergence theorem! follows.

Theorem 2: Letk,M, D, det[I + kDM], and det[] + kVM]
be defined as previously given; then one can construct an
iterate algorithm that converges to k,,. If k,, is finite, then this
procedure identifies the parameters 8; € D at which &, is deter-
mined. There are three steps involved in determining X,,:
1) determine the lower bound on k,,, 2) determine the upper
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bound on k,, and 3) iterate to converge lower and upper
bounds on k,,.

The actual procedure involved in each step is very problem-
dependent. As one may expect, there are several special cases
concerning the critical vertices that vary the algorithm. For
example, let co{det{/ + kVM]} intercept the origin between
two critical vertices F; and F;, one or both of which are coinci-
dent. For this case, different logic is required when splitting
the domain into subdomains. deGaston and Safonov! present
an excellent exposition of these special cases. They are briefly
summarized here.

Special Case 1

The co{det[/+kVM]} intercepts the origin at a single
isolated critical vertex (ICV) F;=det{/+k;Ay,M]. Then
m(i,j)=0, k; =k, =k, and the algorithm stops. The param-
eters that cause instability are at the vertex V;.

Special Case 2

The co{det[] +kVM]} intercepts the origin between two
ICVs F; and F;, where m(i,j)=1. Both points F; and F;
are contained in the mapped hypercube image det[/ + kDM].
With Lemma 2, the line segment connecting these two ver-
tices is also contained in the mapped hypercube image
det[/ + kDM]. Thus, k;=k, =k, and the algorithm stops.
The A along this edge of the hypercube that is destabilizing is
given by ’

Ag = diag[(1-B)V; +B8V;]
where

B € (0,1) such that det[I+kAz;M] =0 (12)
If either of these special cases is true, the application of step 1
determines k,,. Only if m(i,j)=2 does the algorithm progress
further.

Consider ICVs F; and F; with m(i,j)=2. The upper bound
on k,, is determined by examining the m(i,j)! vertex paths
between F; and F;. The upper bound k, is determined by the
largest k along one of the m (i,j)! vertex paths that intercepts
the origin. If k is increased and the origin is not intercepted,
then k, = o. Once the lower and upper bounds &, and &, have
been determined, Lemmas 3-5 are used to converge to k,,.

Special Case 3

The co{det[]+ kVM]} intercepts the origin between two
critical vertices F; and F; in which one or both are coincident.

Special Case 3a

Consider the problem where F; and F; both intercept
the origin, i.e., det[J+KkAy,M] =det[I+kAVjM] =0. Then,
k; =k, and the stability margin is defined at multiple values of
Ay,.

Special Case 3b

There are several coincident vertices located at F; and several
at F; in which m, is defined as follows:

m.=minf{m(i,j)} =1

i={a,b,)}
Jj=1{s,t,...} 13)
Pickani € {a,b,...}andj € {s,¢,...}. Thus, m(i,j)=1and

k,, is determined as in special case 2.

Special Case 3¢

This is the same condition as in special case 3b, except that
m. =2. For this case, domain splitting is used to divide the

domain into subdomains. This is repeated along each of the
vertex paths to each coincident critical vertex.

Let the set {z} contain z coincident critical vertices at F, and
the set {y} contain y critical vertices at F,. Take the first two
elements of the set {z}, say, a,b. Then m(a,b)=1, since both
a,b are vertices of the hypercube. Split the domain along the
edge between these two vertices with an orthogonal cut. This
creates two subdomains D, and D,, each containing one of the
critical vertices ¢ and b. Continue this process z-2 times, creat-
ing z subdomains, each having an isolated critical vertex at F,.
Repeat this same process for the critical vertices in {y }. This
creates zy subdomains, each having two critical vertices. Apply
the procedures of the preceding special cases to each of these
subdomains.

Autopilot and Missile Dynamics

The longitudinal flight control system for a bank-to-turn
cruise missile is shown in Fig. 3. By using block diagram
manipulations, the block diagram of Fig. 3 is transformed
into the analysis structure of Fig. 1. In Fig. 3, the transfer
function matrix K(s) describes only controller dynamics. The
nominal rigid-body longitudinal dynamics, containing un-
certain parameters, are represented by G(s). This autopilot
design!’” uses proportional plus integral control elements in
closing the inner pitch-rate loop and outer acceleration loop.
The autopilot feedback gains are K, = —0.0015, K, = —0.32,
a;=2.0, and a, =6.0.

The longitudinal (pitch) missile dynamics form a single-
input multi-output design model. The autopilot commands
normal-body acceleration using tail fin control. The states
modeled in the open-loop rigid-body airframe are «, ¢, 6, and
& (angle of attack, pitch rate, fin deflection, and fin rate). The
differential equations used to describe the open-loop dynamics
are

&=Zy+q+Zsd

(1=Maa+M55

8= —2{wh— w2+ s, 14)

The measurements available are normal acceleration Ay
=VZ,a+ VZs6 (ft/s?) and pitch rate g (rad/s). The scalar
control input # =6, (rad) is the fin-angle command.

The foregoing aerodynamics have been linearized and repre-
sent a trim angle of attack of 16 deg, Mach number of 0.8, and
altitude of 4000 ft. The following parameters are the nominal
values of the dimensional aerodynamic stability derivatives:
Z,=—1.3046 (1/5); Zs= —0.2142 (1/s); M, =47.7109 (1/5%);
and M;= —104.8346 (1/s%). The sign of M, determines the
stability of the open-loop airframe. When M, is positive, the
airframe is unstable. This occurs when the aerodynamic center
of pressure is forward of the center of gravity. The remaining
system parameters are missile velocity V' =886.78 (ft/s) and fin
actuator damping and natural frequency {=0.6 and w=113.0
(rad/s), respectively.

The transfer function matrix from the fin command to nor-
mal acceleration 4, and pitch rate g is

o? V(2552 +Z,Ms— ZsM,

(§2—Z,5 — M )(s*+ 2 {ws + w?)
G(s) = = (15)
A(Mis + M, Zs— M, Z,

(82— Zos —M )%+ 2{ws + w?)

SIS
=13

g
bc

Note that the acceleration transfer function contains a right-
half plane (RHP) zero. When open loop unstable, the ac-
celeration transfer function contains both a pole and zero in
the RHP.

The autopilot design K(s) stabilizes the nominal plant
model G(s) using output feedback, as shown in Fig. 3. The
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analysis problem is to determine the perturbation bounds on
the foregoing imprecisely known, dimensional, aerodynamic
stability derivatives such that the closed-loop system remains
stable. These aerodynamic parameters are modeled as follows:

Zy = Zpo(1+61)
Zs=Zs(1+6,)
M, =M, (1+8;)
M= Ms(1+54) (16)
with each |§;| <1.

Calculating the Real Multiloop Stability Margin

This section presents the details of a Fortran program called
ROBUSTR that computes the lower bound on the real margin.
ROBUSTR is a computer program that implements the signal
flow graph model decomposition and computes the convex-
hull lower bound on the real margin. Figure 6 presents a flow-
chart of ROBUSTR. The following paragraphs detail the pro-
gram’s content and algorithms.

Block 1: Model Initialization

In this block two important steps are performed. The first is
the development of the diagonal perturbation analysis model
isolating the real-parameter variations into the A matrix. The
second step is the definition of the parameter-space hypercube
modeling the parameter variations.

First, a signal flow graph model is drawn for the control
system. Each parameter p; that is to be varied is drawn isolated
on an individual branch. The multiplicative parameter uncer-
tainty model is p; = p;o(1 + 8;), where p;, is the nominal value
of the parameter p;. The signal flow graph branches for p; are
shown in Fig.7. The analysis model uses A=diag[§;] with
M(s) a full matrix (shown in Fig. 1). The AM model is formed
by breaking the 6; branches and forming input and output
nodes as shown in Fig. 7. The transfer matrix M(s) is formed
by computing the transfer function between each input node
and each output node. This task is simplified through the use
of a Fortran 77 subroutine written by Mears.!8

This subroutine, Perseus (from Greek mythology, Perseus
was the son of Zeus and Danaé who through his wit was able
to slay Medusa, a Gorgon whose sight would turn a beholder
into stone), will find the determinant of a matrix that has
polynomial elements. Coupled with Cramer’s rule from linear
algebra, Perseus can be used to determine transfer functions
for polynomial matrix equations of the form

AS)X =B(s)U a7

where A (s) is an n, X n, polynomial matrix, B(s) a n, X n,
polynomial matrix, X the output variable vector of length n,,,
and U the input variable vector of length n,. From Cramer’s
rule, the transfer function between output X; and input U, is
simply the ratio of determinants

X, _|A~| s
U~ A

where A is defined by Eq. (17), and 4 ~ the matrix A with
its ith column replaced by the jth column of the matrix B.

Fortunately, signal flow graph representations can be easily
put into polynomial matrix form (as can block diagrams, state-
space equations, and sets of simultaneous differential equa-
tions), so that Perseus is ideally suited to finding the parameter
variation transfer matrix M(s). Although our approach pre-
sented here uses polynomials to form the model M(s), a state-
space model for M(s) could also be employed. This would be
preferred for higher-order systems where polynomials can af-
fect numerical accuracy.

Table 1 Hypercube vertices for n =4 parameters

Vertex Zy Zs M, Ms

Vi -1 -1 -1 -1
Vs -1 -1 -1 1
V3 -1 -1 1 -1
Va -1 -1 1 1
Vs -1 1 -1 —1
Ve -1 1 —1 1
V7 -1 i 1 -1
Vs -1 1 1 1
Vo 1 -1 -1 -1
V1o -1 -1 1
Vi -1 1 -1
Via ~1 1 1
Vs -1 —1
Via 1 -1 1
Vis 1 1 -1
Vie 1 1 1

— e e
—

For a system with n, model inputs, Perseus is called (n,)2+ 1
times. The first call forms the denominator polynomial. The
remaining (n,)? calls form the numerator polynomials for
each of the transfer functions.

Figure 8 is a signal flow graph model of our pitch flight
control system derived from Eq. (14). The aerodynamic stabil-
ity derivatives Z,, Z5, M,,, and M are the parameters that may
vary (V'is missile velocity, and { and w are the actuator damp-
ing and natural frequency and are assumed to be known). In
the analysis model, the M matrix is a 4 x4 matrix with A a
diagonal 4 X 4 matrix. Since there are n =4 uncertain parame-
ters, the parameter-space hypercube modeling the variations
has 2*=16 hypercube vertices. A matrix containing the ver-
tices of this hypercube has 2” rows with four columns and is
shown in Table 1.

Block 2: Optimization over Frequency

The real margin calculation requires finding the minimum
k over frequency and using this £ as the bound over all fre-
quencies. The program ROBUSTR can compute a frequency
sweep or it uses a conjugate gradient algorithm to find the
minimum k. The conjugate gradient algorithm was taken from
Press et al.!®

Block 3: Evaluate M{jw)

At each frequency the transfer matrix M(jw) must be eval-
uated. ROBUSTR computes this matrix by forming a fre-
quency vector s = [(jw)? (Jw)P~! 1] and computing the
dot product between this vector and each numerator poly-
nomial. The dot product with the denominator polynomial is
computed once. The matrix is formed by looping through this
calculation for each numerator product, dividing by the de-
nominator product, and placing the quotient into the proper
element of the M matrix.

Block 4: k; = kj—1+ Ak

This block increments the stability margin k& to a larger
value. The loop stops when the convex-hull boundary in-
tercepts the origin of the complex plane. The algorithm can
be adjusted to control the accuracy (number of significant
digits) of the minimum k,; =%k, such that the determinant
det{l+ k;AM]}=0.

Block 5: Map Vertices det[/ + k;AM ]

This block maps the 2” vertices of the parameter-space hy-
percube into the Nyquist plane at a single frequency w. The
Ay, matrix containing +1s along its diagonal is formed for
each vertex V;. If we use vertex Vj; from Table 1, the Ay 3
matrix is

Ay, = 19)
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Each vertex V; is mapped to point F; in the complex plane
using the determinant det[[ + k; Ay, M (jw)]=F;. The mapped
vertex F; will have real and imaginary components. The Re F;
are stored in a vector x and the Im F; in a vector y. At each
increment of k;, the determinant of an n, X n, matrix is com-
puted 27 times.

Block 6: Form Convex Hull

The lower bound on the real margin is computed by forming
a convex hull covering the mapped hypercube vertices and
determining if the origin of the complex plane is contained on
the boundary of this convex hull. The subroutine used to com-
pute the convex hull was written by Tang?° as part of his thesis,
but was later modified to improve its efficiency.

The convex-hull subroutine works with the x,y vectors con-
taining the real and imaginary parts of the mapped hypercube
vertices. The procedure employed is referred to as package
wrapping.?! The subroutine works as follows.

The first step is to check for coincident points. If any of the
2" mapped vertices are coincident in the Nyquist plane, a flag
is set indicating a coincident point vertex. All but one of the
coincident points is deleted from the set {x,y}.

Assume that no coincident vertex points were found. There
are 2" mapped vertex points in {x,y }. Next, the origin of the
complex plane is added to the set of points {x,y }, increasing
the number of points to 2”7+ 1.

If the number of uncertain parameters is greater than 4
(n >4), the subroutine executes an interior-point-elimination
procedure. If n <4, interior-point-elimination is bypassed. In-
terior-point-elimination forms a polygon using four points
known to be on the convex hull and deletes the points interior
to this polygon from the set {x,y}.

The polygon is formed from the set {x,y} by searching for
the four points having the largest and smallest x and y compo-
nents. An example polygon is shown in Fig. 9, with the four
points highlighted. If the points found result in a polygon with
less than four sides, the set {x,y } is rotated about the origin.
The rotation angle is computed such that points 3-1 become
vertical. Points 2 and 4 are then found by searching for the
largest and smallest x components of the rotated points.

Interior Point
Elimination Polygon

Stan
Fig. 10 Convex-hull package wrapping.

Table 2 Convex-hull boundary points

Vertex Zy Zs M, Ms Re(F;) Im(F;)
Vi -1 -1 -1 -1 2.32 —-0.74
Vs -1 -1 -1 1 0.40 -0.45
Vs -1 -1 1 -1 2.45 -0.49
V7 -1 1 1 -1 2.42 —0.46
Vio 1 -1 -1 1 0.10 -0.12
Via 1 1 -1 1 —0.3E-5 -0.2E-4
Vis 1 1 1 -1 1.15 0.94
Vie 1 1 1 1 0.20 0.17

The algorithm tests for points that lie outside the polygon
and places them in a new set {x,,y,}. Starting with anchor
point 1, the angles from 1 to 2, denoted « 12, and from 1 to
4, denoted « 14, are computed. Any points that have an angle
less than ~ 12 and one greater than « 14 are placed in { x,,¥, }.
After a point is placed in {x,,y,}, it is deleted from the set
{x,y}. The next anchor point is 3. The angles from 3 to 2,
denoted <32, and from 3 to 4, denoted « 34, are computed.
Any point with an angle greater than « 32 and less than « 34
is placed in the set {x,,y,}. The set {x,,y,} contains the
points 1-4 and the points outside of the polygon.

The angle function used in our algorithm does not employ
any trigonometric functions or square roots. This function was
taken from Sedgewick.?! Our angle function (called 6) does
not compute the true angle, but returns a more easily com-
puted number with the same ordering properties. Since we
are using an angle in sorting points, the true angle need not
be computed.

After interior-point-elimination, a package-wrapping algo-
rithm is used to determine the convex-hull boundary points.
Ours is a modified version of the package-wrapping algorithm
taken from Sedgewick.?! Unlike the Sedgewick version, our
algorithm will return all points on the convex-hull boundary.
The Sedgewick algorithm fails when more than one point has
the same 0 value. Figure 10 outlines the package-wrapping
procedure using an arbitrary set of points. Beginning at point
A, the smallest angle # identifies the next vertex point on the
boundary of the convex hull. This process is repeated with the
new convex-hull boundary point, and the convex-hull bound-
ary is formed by progressing counterclockwise around the set
of mapped points. Any vertex identified as a convex-hull
boundary vertex is removed from the set {x,,y,}. The algo-
rithm stops when the first point is reached again, closing the
boundary. Note that the points L and H lying along a line
connecting G and A would not be identified as boundary
points by the Sedgewick algorithm. (This capability is used to
determine if the convex-hull lower bound is exact.) The con-
vex-hull subroutine outputs a vector of indices identifying the
vertices that lie on the boundary of the convex hull.

Block 7: Zero Exclusion Test

The stability margin k; is increased in magnitude until the
origin is just included in the interior of the convex hull. This
is referred to as the zero (origin) exclusion test. If k;is less than
k,;, then the array containing the indices for the convex-hull
boundary vertices will contain the index of the origin that was
added to {x,y}. As long as the origin (zero) is a convex-hull
boundary point, the stability margin loop increments k; to a
larger value. As soon as the origin is not a boundary point, k;
is decreased by the current incremental value Ak.

Block 8: Tes[ k (w) for Minimum

The conjugate gradient algorithm adjusts the frequency w
to find the minimum k(w)=k,. If a maximum number of
iterations is reached, the algorithm automatically stops. The
program output is the stability-margin bound k,, the critical
frequency w;, and the hypercube vertices whose line segment
intercepts the origin. If the line segment that intercepts the
origin was mapped from an edge of the hypercube, then the
convex-hull bound is an exact bound.
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Table3 ROBUSTR CPU usage

Node

CPU time to Analysis

inputs, np equations, n;, form model, s CPU time, s

Uncertain Model
Autopilot parameters, n
Pitch
pitch-rate 4 4
command
Pitch
acceleration 4 4
command
Roll-yaw 4 4
roll-rate 5 5
command 6
7 7
8 8
9 9

13

40
40

40

40

0.6 43
1.6 44
57.5 38
78.0 165 (0.04 b
40 96.5 289
(0.08 h)
117.5 1033 (0.28 h)
136.1 3093 (0.86 h)
156.4 13683 (3.80 h)

08 -
0.6 —
04
02
00 |---Fia
02
-04
-0.6 -~
-0.8
-0.5
o Rea
Fig. 11 Convex hull co[det(/ + kVM)].
ROBUSTNESS THEORY |[% PERTURBATION
(A SMALL
lﬁ] GAIN 13.8%
THEORM
SSVyu o,
[:%:l (UNIT WEIGHTS) 49.0%
STABILITY HYPERSPHERE 0.1%
Xp = .1%
STABILITY HYPERSPHERE 20.3%
p=ACo+b )
STABILITY HYPERSPHERE 0.007%
(LYAPUNOV - UNSCALED)
STABILITY HYPERSPHERE 0.02%
(LYAPUNOV - SCALED) .
KHAthONOV'S THEOREM 15.3%
deGASTON - SAFONOV 60.44%
MONTE CARLO 60-61%
EIGEN ANALYSIS

Fig. 12 Robustness test summary.

Missile Autopilot Analysis Results

The missile autopilot problem shown in Fig. 8 was analyzed
by ROBUSTR. A subroutine was written to input the signal
flow graph model data. These data are used by subroutine
Perseus to. compute the transfer function elements of M(s).
For this problem, there are » =4 uncertain parameters and
n, =4 model inputs.

The program calculated using the convex-hull boundary the
lower bound k; =0.6044 at »=3.46 rad/s. The convex-hull
boundary points are listed in Table 2 and correspond to the
hypercube vertices given in Table 1. Figure 11 displays the
convex-hull boundary in the Nyquist plane. The vertex points
on co{det[] + kVM]} are labeled to determine which vertices
are critical ones.

The next step in computing k,, is to determine the upper
bound k,. This is computed by examining the vertex paths
between critical vertices. Figure 11 shows that the line segment
from Fi4—F intercepts the origin. It is clear from Fig. 11 that
these vertices are two isolated critical vertices.

The ICVs V4 and V4 are

Zo 7 M, M;
Via 1.0 1.0 -1.0 10
Vis 1.0 1.0 1.0 1.0

These two vertices differ in the third coordinate. Thus,
m(14,16)=1. By using Lemma 2, the line segment connecting
these two vertices is contained in the mapped hypercube image
det[I + kDM]. Thus, k,=k,=k,, and the algorithm stops.
The value k =0.6044 is the multiloop stability margin £,,.
Applying this uniformly over each of the aero parameters
produces a 60% variation bound.

The parameter values that first cause instability are de-
termined from Eq. (12). The vaiue of 8 along the line seg-
ment Fy—F¢ is 8=6.31x 1073, This yields

Ag=diag[1.0 1.0 —0.99987 1.0]
which is very close to the vertex V. The closed-loop charac-

teristic polynomial for the missile flight control system has the
following coefficients:

s6: 1

§3 2w — Z,

5%t KK VZ5+ &~ M, —2{Z,

s3: WK, [KVaz +a)Zs+ My — 2{0M, — »*Z,

520 K, [ag(Ms+azKVZ)+ (K V = IZMs— Z,M,)]
s't WK (ZMs—Z;M)[ag(KV —1)+azK, V]

s0: szqaZaqKaV(ZaMB—ZéMu)
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The smallest combination of destabilizing variations occurs
when Z,,, Z;, and M are at a positive 60% variation and M,
is at a negative 60% variation (Ag=diag[l 1 -1 1]).
When this variation occurs, the aforementioned closed-loop
characteristic polynomial fails to be Hurwitz.

CPU Usage

Table 3 summarizes ROBUSTR CPU usage on a Vax sta-
tion 3200 (2.7 Mips) for three missile autopilot applications.
The pitch dynamics contain four uncertain aerodynamic
parameters (7 =4); the roll-yaw dynamics contain nine uncer-
tain aerodynamic parameters (n =9).

The number of node equations n, describes the dimension
of the 4 matrix in Eq. (17). The signal flow graph model will
have 7, inputs. Using Cramer’s rule [Eq. (18)] to compute
M(s) requires computing the determinant of an n, X n, poly-
nomial matrix [the A matrix in Eq. (18)] (n,)2+1 times. The
roll-yaw results (Table 3) show that our application of
Cramer’s rule with Perseus is a polynomial-time algorithm in
forming the analysis model M(s). (For fixed n,, CPU usage is
proportional to n,.)

Analysis CPU usage dramatically increases with the num-
ber n of uncertain parameters. Although ROBUSTR uses a
polynomial-time algorithm in determining the convex huli,?!
ROBUSTR is an exponential-time analysis algorithm. Each
time we increase k; (in computing the lower bound k;), the 2"
hypercube vertices are mapped into the Nyquist plane using the
determinant det[/ +k;AM]. As n increases, the number of
points computed is increased exponentially. Further work is
needed to reduce the impact of this increase.

Comparison with Other Robustness Tests

Using results taken from Wise,?*?* Fig. 12 summarizes auto-
pilot stability robustness predictions obtained from two singu-
lar-value robustness tests, the real multiloop stability margin,
a Monte Carlo eigenanalysis, and results based on several poly-
nomial tests. The only robustness test not found to be conser-
vative was the real multiloop stability margin calculation by
deGaston and Safonov.

Conclusions

Our combination of signal flow graphs with Perseus has
created an efficient procedure capable of computing robust-
ness analysis models for independent real-parameter varia-
tions. This same procedure can be extended to form controller
synthesis models, isolating uncertainties in A and controller
transfer functions in K, by forming the interconnection plant
matrix P. These types of A—P — K models are used in the
synthesis of H,, optimal controllers.

Our use of interior point elimination with package wrapping
has produced an efficient convex-hull routine. However, we
will always have to evaluate the 2" vertex points at least once
in the algorithm. The exponential explosion in the number of
vertex points will continue to be a problem with the deGaston-
Safonov algorithm. Further research is needed in this area.
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